

ORIGINAL ARTICLE

Åke Lernmark · Günter Klöppel · David Stenger
 Chare Vathanaprida · Kaj Fält · Mona Landin-Olsson
 Denis G. Baskin · Jerry P. Palmer · Allen M. Gown
 Jacob S. Petersen · Linsong Li · Hans Edenvall
 Richard S. Mauseth

Heterogeneity of islet pathology in two infants with recent onset diabetes mellitus

Received: 9 September 1994 / Accepted: 8 November 1994

Abstract The mechanisms by which the beta cells of pancreatic islets are destroyed in insulin-dependent diabetes mellitus (IDDM) are poorly understood. In this report the pancreatic histo- and immunopathology of two children, both HLA-DR 3/4, DQ 2/8 positive and who both died from cerebral oedema within a day of clinical diagnosis of IDDM, were investigated. Patient 1, a 14-month-old girl, had a 4-week history of polydipsia and polyuria. Patient 2, a 3-year-old boy, had 2 days of illness. Both patients had a similarly severe loss of insulin cells but differed markedly as to the extent of lymphocytic islet infiltration (insulitis). Apart from insulitis, marked islet macrophage infiltration was demonstrated in both patients with the HAM-56 monoclonal antibody. Neither patient showed aberrant expression of HLA

class II antigens on insulin-immunoreactive cells, but allele-specific HLA-DQ8 expression was evident on endothelial cells. Glutamic acid decarboxylase immunoreactivity was detected in both insulin- and glucagon-immunoreactive cells. It is concluded that the heterogeneity of islet pathology, especially insulitis, may reflect different dynamics and extent rather than different pathomechanisms of immune destruction of islets in IDDM.

Key words Recent-onset insulin dependent diabetes mellitus · Insulitis · Islet cell macrophages · Glutamic acid decarboxylase · Islet destruction

Introduction

Insulin-dependent diabetes mellitus (IDDM) is clinically evident after a major loss of pancreatic islet beta cells. The natural history of the disease prior to the onset of symptoms is poorly understood, but several autoimmune phenomena have been documented (for review see [13, 44]. The prodrome may be long since islet cell (ICA), insulin (IAA), or glutamic acid decarboxylase (GAD65Ab) autoantibodies have been reported as long as 8–12 years before the clinical onset [3, 4, 6, 23, 42, 52, 55, 59]. A prodrome would obviously be shorter in infants and young children, but the prevalence of ICA, IAA or GAD65Ab at diagnosis of IDDM in children is not different from that in teenagers [11, 35]. Young children, however, tend to have higher frequency and levels of IAA than older children [1, 2, 36]. The clinical onset of IDDM in infants and young children is also associated with lower plasma and urine levels of C-peptide [60]. The „pre-onset” destruction of the islet beta cells could therefore proceed more rapidly in infants and young children.

Insulitis is often [8, 14, 15, 17, 18, 21, 22, 31, 33, 46, 49, 51, 64], but not always [12, 26] seen at the clinical onset (Table 1). However, since the number of multiple-case studies on newly diagnosed children is small, there

Å. Lernmark (✉) · D. Stenger · D. G. Baskin · J. P. Palmer · L. Li
 Department of Medicine, University of Washington, Seattle,
 WA 98195, USA

G. Klöppel
 Department of Pathology, Vrije Universiteit Brussel,
 Brussels, Belgium

C. Vathanaprida · D. G. Baskin
 Department of Biological Structure,
 Veterans Affairs Medical Center, Seattle, WA 98108, USA

K. Fält
 Department of Pathology, Malmö General Hospital,
 Malmö, Sweden

M. Landin-Olsson
 Department of Medicine, University of Lund, Lund, Sweden

A. M. Gown
 Department of Pathology, University of Washington, Seattle,
 WA 98195, USA

J. S. Petersen
 Hagedorn Research Laboratory, Gentofte, Denmark

H. Edenvall
 Department of Pediatrics, Karlskrona Hospital, Karlskrona,
 Sweden

R. S. Mauseth
 Department of Pediatrics, University of Washington, Seattle,
 WA 98195, USA

Table 1 Literature review of reports on insulitis in insulin-dependent diabetes mellitus. Italicized entries not included on Fig. 5.

Age at onset ^a	Duration ^a	Insulitis (positive cases/total cases)			Reference
		All cases	<16 years		
<i>10 years</i>	<i>„Acute”</i>	<i>1/1</i>	<i>1/1</i>		54
46.5y (9–73y)	2y (1 days–22y)	7/59	0/4		10
25.7y (20–51y)	1y (1d–3y)	1/6	0/0		29
<i>45y (4.5–80y)</i>	<i>Not given</i>	<i>8/183</i>	<i>5/12</i>		29
6.5y, 18y	2 weeks, 6y	1/2	1/1		14
36.75y (11–63y)	4.75y (26d–30y)	3/26	1/3		62
9y (2–15y)	1.6y (17d–29y)	1/9	1/9		61
6y, 11y	6w, 6d	2/2	2/2		56
18y	10m	1/1	0/0		43
<i>14y (11w–28y)</i>	<i>13d (2d–8w)</i>	<i>3/18</i>	<i>Not given</i>		41
13.7y (11m–30y)	15.5d (1–180d)	15/22	14/18		21
12y (2–29y)	20y (2–37y)	0/32	0/24		21
9m, 33m	4d, 7d	2/2	2/2		57
17y (6–21y)	3.5w (1–78w)	0/13	0/5		12
5y	20d	1/1 ^b	1/1		22
14.7y (1–31y)	3q (1d–8w)	6/11	5/6		31
10y	3d	1/1 ^b	1/1		64
14m	5d	1/1 ^b	1/1		46
7m	3m	1/1 ^c	1/1		51
4y (2–12y)	4w (1–12w)	8/9	8/9		14
6y (5–7y)	4y(2–6y)	0/2	0/2		14
12y	1m	1/1	1/1		8
8.5y (1.5–18.5y)	2w (1w–9m)	47/47	47/47		15
10.5y (DOB–18y)	3y (13m–9y)	3/8	2/17		15
8.4y (1.5–21.4y)	3w (2d–3m)	21/23	16/18		16
7.5y (1–14y)	3y (1y–9y)	3/12	3/12		16
17.5y (7–20y)	1y (1–15y)	4/4	2/2		18
31y (24–49y)	3.1m (2–4m)	0/7 ^d	0/0		26
12y (1–18y)	<3m	12/12	11/11		19
31y (17–53y)	(0–7m)	12/18 [§]	0/0		30

^aFor total cases >2, figure shown is the median (range in parentheses)

^bAdditional viral pathology observed

^cAdditional endocrine autoimmunities

^dBiopsies obtained at laparoscopy

is no understanding of the possible relationship between the degree of insulitis and clinical onset. A systematic study of islet pathology at the onset of IDDM is obviously difficult to undertake, and therefore all except a few [26, 30] studies of islet pathology in IDDM (see Table 1) have been conducted in autopsy cases. The few autopsy pancreases studied recently were obtained from children, because children less than 4 years of age at onset of IDDM are at increased risk of fatal cerebral oedema [53].

In this report, we describe two children, both heterozygous HLA-DR 3/4, DQ 2/8 positive: a 14-month-old girl (patient 1) and a 3-year-old boy (patient 2), both of whom died with cerebral oedema within a day of clinical diagnosis of IDDM. The two children were different in that patient 1 had a 4-week history of polydipsia and polyuria, whereas patient 2 had only 2 days of illness. We demonstrate that both patients had a similarly severe loss of insulin beta cells; however, while both had marked islet macrophage infiltrations, significant insulitis was only detected in patient 1. The question is addressed whether the difference in islet pathology between the two infants reflects different pathomechanisms or different dynamics of immunoreactivity.

Patients, materials and methods

Patient 1

A 14-month-old girl was admitted to the hospital unconscious and with irregular breathing. Her parents and brother (3 years older) were healthy, but both IDDM and non-insulin dependent diabetes mellitus (NIDDM) were present among second- and third-degree relatives. The girl had been well until 4 weeks earlier when increased thirst and polyuria developed. The day before admission she had a fever of approximately 38°C, her breathing was abnormal and she was lethargic. She improved spontaneously during that day, but was unconscious the next morning and brought to a primary health care center where ketonuria 3+ and glucosuria 3+ were found. On arrival at the hospital in the afternoon, blood glucose was 30 mmol/l (540 mg/100 ml), pH 7.11, PCO_2 1.6 and white blood cells 36 700. She was treated with 12.5 ml/kg per hour acetated Ringer's the first 4 h and 25 mmol sodium bicarbonate was given to counteract the acidosis. Regular insulin at 0.1 U/kg per hour was given intravenously. After 4 h the blood glucose value dropped below 10 mmol/l and the acetated Ringer's was changed to 50 mg/ml glucose at an infusion rate of 7.5 ml/kg per hour for another 4 h and 4 ml/kg per hour thereafter. During the night both her metabolic and clinical status improved. The next morning, however, she had convulsions and 2 h later she developed bradycardia and irregular breathing. She was intubated, hyperventilated and given beta-methasone to decrease the cerebral oedema. She had no pupillary reflex and was pronounced brain dead in the afternoon following two aortocervical angiographies. Bacterial cultures taken from blood, urine and cerebrospinal fluid were all negative. The patient's kidneys were taken for transplantation and the pancreas but no serum was made available for investigation. The HLA type determined at the University of Lund, Lund, Sweden was DR3/4; DQ2/8.

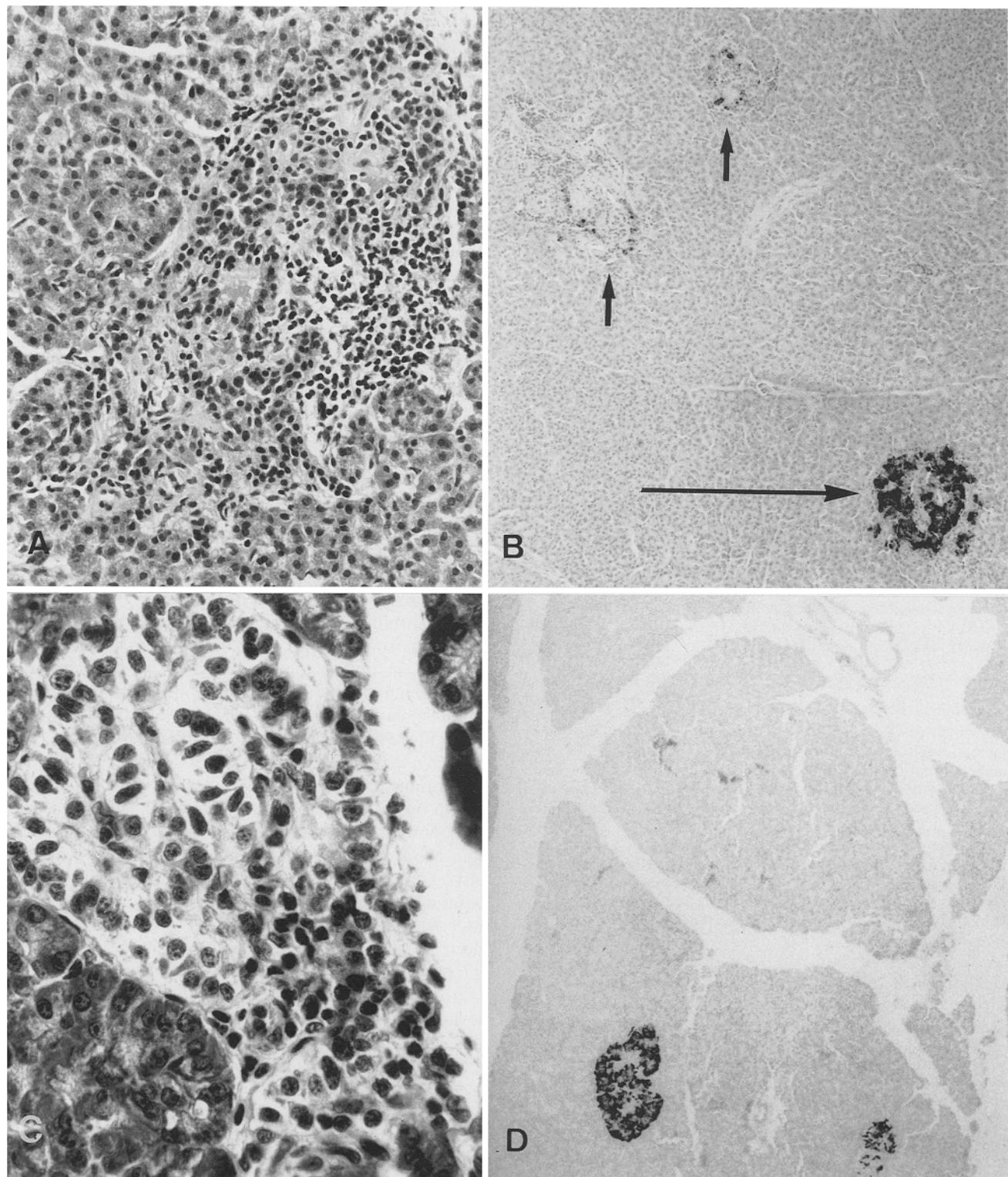
Patient 2

A 3-year-old boy was brought to a physician's office following 1 day's signs of some dehydration and of lethargy subsequent to a day of stomach upset experienced when travelling with his parents. The family history was negative for autoimmune diseases including IDDM; the mother (30 years old) had developed diet-treated gestational diabetes in the 8th month and a maternal aunt has NIDDM. At the physician's office, ketonuria was 4+, Chemstrip blood glucose was 45 mmol/l (810 mg/100 ml) and the boy was administered 3 U regular insulin subcutaneously and given 30 ml/kg lactated Ringer's prior to his arrival at the hospital. Admission laboratory venous blood values were pH 7.11, PCO_2 14 and white blood cells 36 200. Since his mental status was deteriorating, a CT scan was performed immediately, revealing cerebral oedema. The patient was intubated, hyperventilated, given mannitol, fluids were restricted and he was taken to the operating room for placement of an intracranial pressure monitor and a ventriculostomy. On return to the intensive care unit, intracranial pressure subsided to normal and his metabolic status improved. However, subsequent to this blood pressure dropped and he did not respond to dopamine and fluid boluses. He was pronounced brain dead following negative apnoea tests and no flow on a cerebral perfusion study. The heart, liver and kidneys were removed for transplantation while the pancreas and serum were made available for investigation. The serum was positive for both ICA and IAA determined using standardized methods [7, 34, 45] but negative for GAD65Ab in immunoprecipitation assays with either dog [5] or recombinant human islet GAD65 [24]. The ICA reaction was also tested at multiple dilutions on the pancreas of the patient. However, there were no differences in end-point titres whether the patient's pancreas or the pancreas for standard ICA determination was used. The HLA type determined at the Puget Sound Blood Bank, Seattle, Wash. was DR3/4; DQ2/8.

Non-diabetic patients

Pancreatic tissue was also obtained from nine age- and sex-matched non-diabetic children. In Brussels three control specimens were obtained from children who had died after congenital heart disease (4 years old), carbon monoxide poisoning (4 years old) or a traffic accident (1.5 years old) and in Seattle six specimens were obtained (courtesy of Dr. Joseph R. Siebert) after congenital heart disease (8 months old), acute myelocytic/lymphocytic leukaemia (1 year old), asplenia complex (3.5 years old), congenital heart disease (3.8 years old), acute lymphoblastic leukaemia (5 years old) or pulmonary hypertension (10 years old).

Histology, immunocytochemistry and in situ hybridization


The pancreases were fixed in formalin (patient 1 and controls) or Bouin-Hollande solution (patient 2) and embedded in paraffin. Immunocytochemical studies were performed using the standard avidin-biotin immunoperoxidase technique, with the antibodies listed in Table 2. In situ hybridization of insulin was carried out as described previously [58]. To determine the proportion (i.e. volume density) of islet tissue in relation to the total pancreatic parenchyma, the point counting method [25, 33] was used in the two patients and in the three Brussels controls. The analysis was performed at 100 \times magnification with a 100-point graticule on sections stained by haematoxylin and eosin (H&E), which permitted point counting of islets whether infiltrated by mononuclear cells or not. Only the exocrine parenchyma was used as a reference volume, whereas connective tissue, vessels and nerves were excluded. Immunostained insulin and glucagon cells and islet macrophages in percent of islet tissue were thereafter determined at 400 \times magnification. At least 80 fields were evaluated to cover a profile area of about 2 mm².

Results

In patient 1, histological examination of samples from different regions of the pancreas revealed the presence of a marked mononuclear cell infiltration (insulitis) in and around many islets (Fig. 1A, B). The islets which lacked insulitis (not shown) were composed of small endocrine cells and had irregular outlines. Normal-appearing islets were very rare. In patient 2, only two islets out of 200 examined showed a discrete mononuclear cell infiltration at the islet periphery (Fig. 1C). Most islets were composed of small endocrine cells often difficult to distinguish from the surrounding acinar cells. The remaining islets were readily recognizable and contained some slightly hypertrophic islet cells staining for insulin. The distribution of the latter islets was uneven in the pancreas (Fig. 1D). Mononuclear cell infiltrations were not detected in the control pancreases. This analysis revealed that insulitis was severe and involved most islets in the younger child (patient 1), while affecting only single islets in the older child (patient 2). Lymphocytic infiltration in patient 1 was confirmed by positive immunostaining with both T- and B-lymphocyte-specific antisera, as well as antiserum against the common leucocyte antigen. It was next tested whether the difference in intensity of insulitis was correlated to a difference in the presence of insulin-, proinsulin- or glucagon-immunoreactive cells.

Immunostaining showed cells positive for insulin and glucagon in both patients. In addition, the islets contained somatostatin and pancreatic polypeptide cells (data not shown). In patient 1, islets had insulin-positive cells (Fig. 1B); however, the architecture of the islets was often disrupted and both insulin (Fig. 2A) and glucagon-immunoreactive cells were detected in strands broken up by inflammatory cells. Patient 2 showed clusters of islets with a normal number of insulin cells (Fig. 1D); most islets, however, were devoid of insulin-immunoreactive cells but stained for glucagon as well as somatostatin and pancreatic polypeptide (data not shown for the latter two hormones). Islet structures are still detectable due to weakly stained insulin cells (Fig. 1B, D). The islets with insulin-immunoreactive cells were also found positive by a proinsulin antibody (Fig. 2B) as well as by in situ hybridization for proinsulin mRNA (Fig. 2C) or islet amyloid polypeptide (IAPP) (not shown). The number of cells which hybridized to proinsulin mRNA did not exceed the number of insulin-immunoreactive cells. Proinsulin expression at the RNA and the protein level was reduced when compared with results in controls.

Morphometric evaluation of the proportion of insulin- and glucagon-immunostained cells in the islets of four sections from each individual revealed that patient 1 had 8% insulin- and 27% glucagon-positive cells, while patient 2 had 13% and 28%, respectively, compared with a mean of 54% and 16% respectively in the three controls (Table 3). The remaining proportion of the islet area was occupied by somatostatin, pancreatic polypeptide and vascular cells. In both diabetic pancreases a considerable

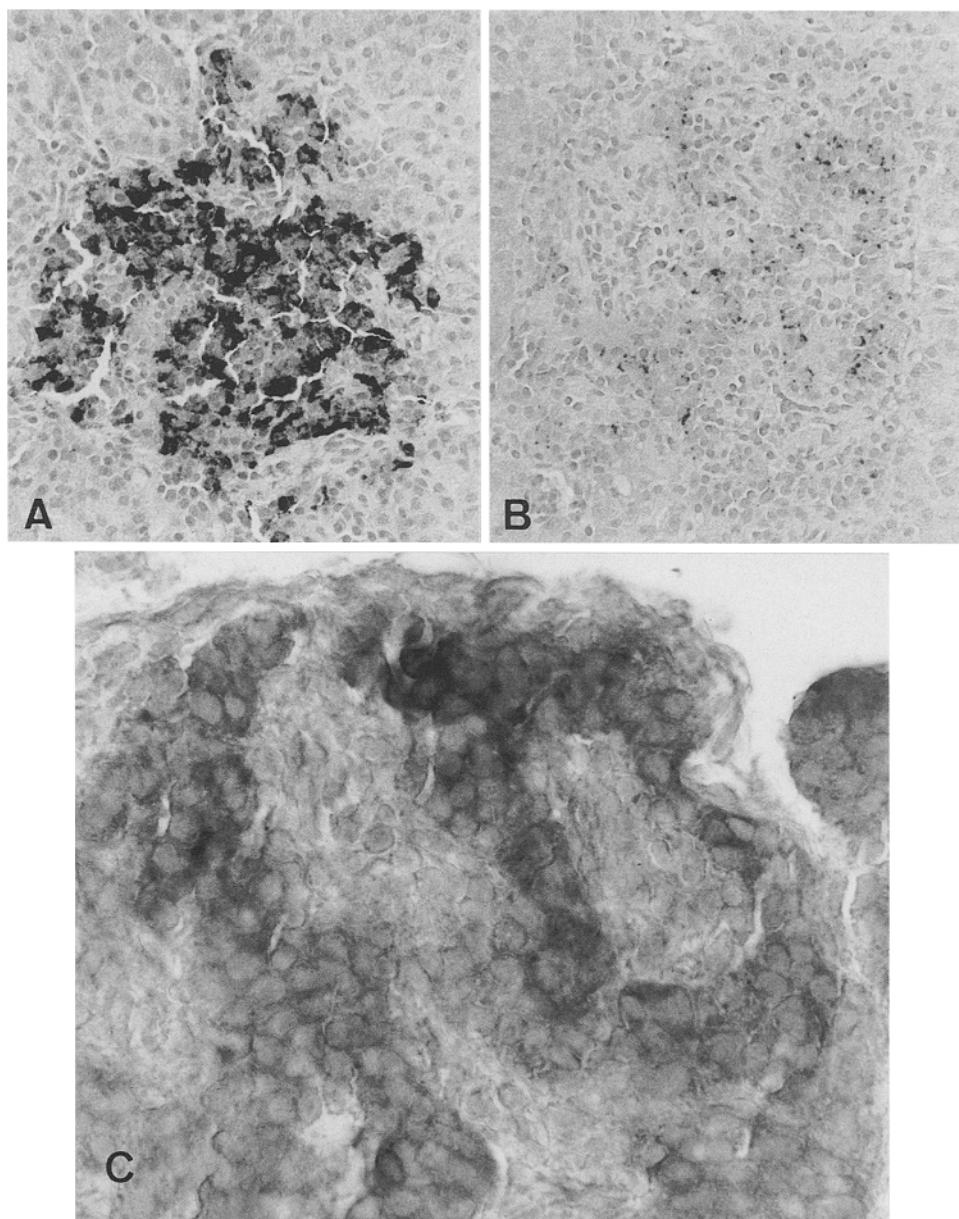
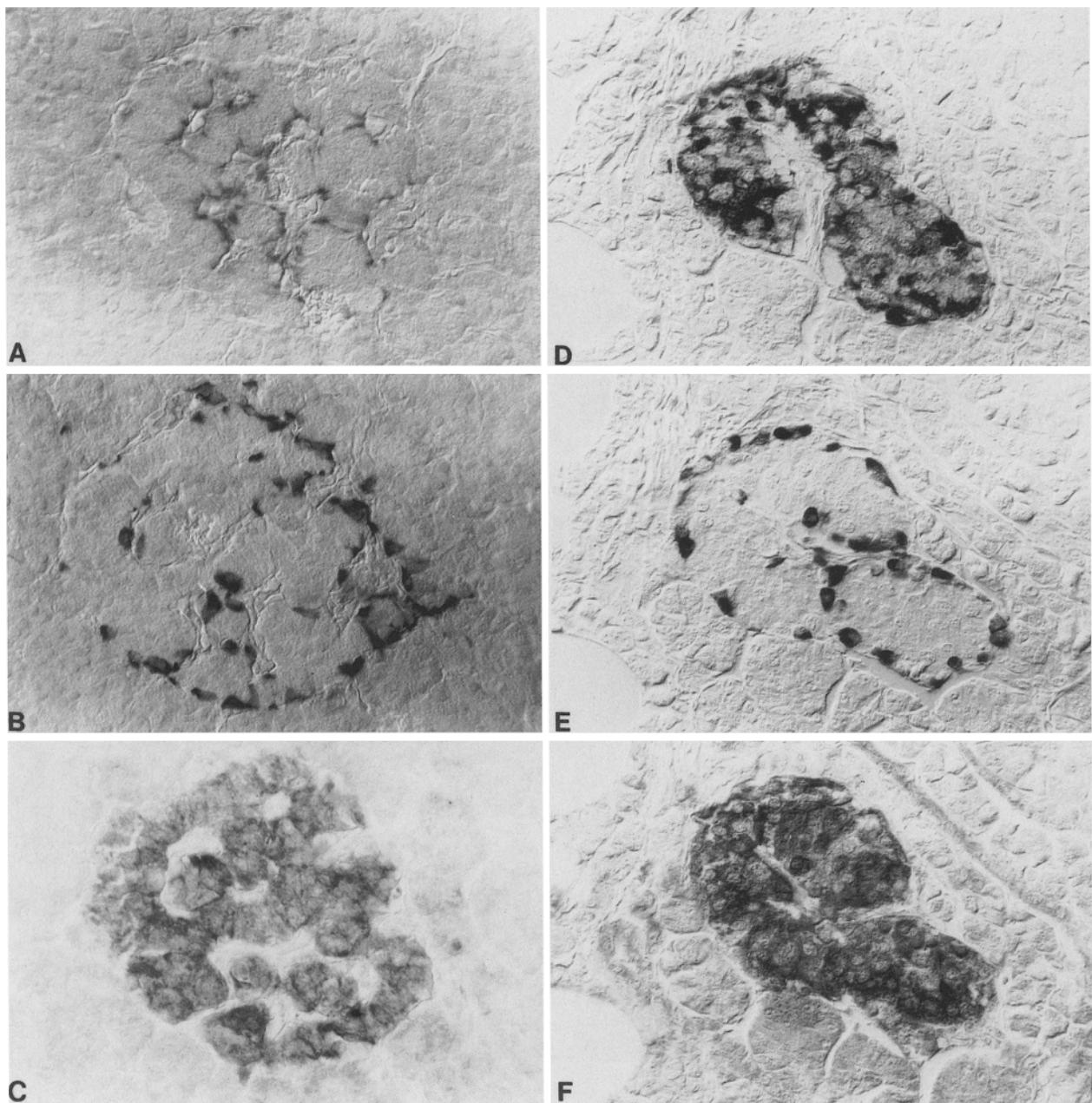


Fig. 1A–D Patient 1. **A** Islet showing severe mononuclear cell infiltration (insulitis). H&E, $\times 120$. **B** Immunostaining for insulin showing a normal-appearing islet with many insulin cells (long arrow) and two other islets almost devoid of insulin cells but with insulitis (short arrows). $\times 60$. **C** Patient 2. One of the two islets detected showing minimal (peri)-insulitis. $\times 250$. **D** Immunostaining for insulin reveals the uneven distribution of the few insulin-positive islets in the pancreas. $\times 40$

portion of the islet area is represented by mononuclear cells and a marked expansion of the capillary and peri-capillary space (Fig. 1A, C).

Our rabbit peptide antiserum (7647) developed against amino acid positions 570–585 of GAD65 [39] but also representing the C-terminal end of GAD67 [9] stained islet cells in the pancreas of patient 2 (Fig. 3, left column),

Fig. 2A Islet from patient 1 showing severe insulitis and reduced numbers of beta cells staining for insulin. $\times 120$. **B** The same islet in an adjacent section shows a reduced proinsulin staining. $\times 120$. **C** Another islet from patient 1 reveals a positive hybridization signal against proinsulin mRNA. $\times 250$


as well as in the control children (Fig. 3, right column). When insulin (Fig. 3, panels A and D) and glucagon (panels B and E) immunostaining was compared with that of GAD (panels C and F), it was observed that GAD immunoreactivity is independent of insulin positivity and was also present in glucagon cells. The intensity of insulin immunoreactivity (Fig. 3A) did not correlate with that of GAD immunoreactivity in adjacent sections (Fig. 3C).

In a subsequent analysis we examined whether macrophages contributed to the mononuclear islet infiltrate. Staining with monoclonal antibody HAM-56, which detects macrophages (Table 2), showed the presence of positive cells within the islets of both patients (Fig. 4). The number of HAM-56-positive cells detected per islet varied, but was most dramatic in patient 2. In Fig. 4, immunostaining with HAM-56 is shown in panel A and the

corresponding staining with normal mouse serum on an adjacent section in panel B. The morphometric evaluation of HAM-56-immunostained sections showed that patient 1 had 4% and patient 2 had 12% HAM-56-positive cells in the islets. In the control pancreases only single HAM-56 positive cells were found (Table 3).

The presence of macrophages in islets which were either devoid of or contained a significant number of insulin-positive cells suggested that HAM-56-positive cells might be involved in the destructive process. The presence of macrophages in the islets also suggests a marked potential for antigen presentation. Since both children were HLA-DR 3/4-DQ 2/8-positive, we tested thereafter whether these molecules were present on islet cells.

The pancreatic tissue was found to contain scattered HLA-DR-immunoreactive cells (<10%) which appeared

Fig. 3A–F Islets from patient 2 (*left column*) and from a control pancreas (*right column*). Immunoreactive insulin (**A, D**), glucagon (**B, E**) and glutamic acid decarboxylase (GAD) (**C, F**). GAD immunoreactivity is independent of insulin positivity and appears also to be present in glucagon immunoreactive cells. $\times 400$

to be macrophages or endothelial cells. No apparent endocrine cells were found to express HLA-DR. The factor-VIII-positive endothelial cells of larger vessels failed to express HLA-DR. Staining with a monoclonal antibody specific for HLA-DQ8 [48] (Fig. 5A) showed staining of endothelial cells and macrophages in sections from both children, confirming their tissue typing. The HLA-DQ8 staining was unaffected by an excess of the HLA-DQ7 synthetic peptide (Fig. 5A), but was completely abolished by the immunizing peptide of DQ8

(Fig. 5B). Aberrant expression of HLA-DQ on beta cells was not detected in either child.

Discussion

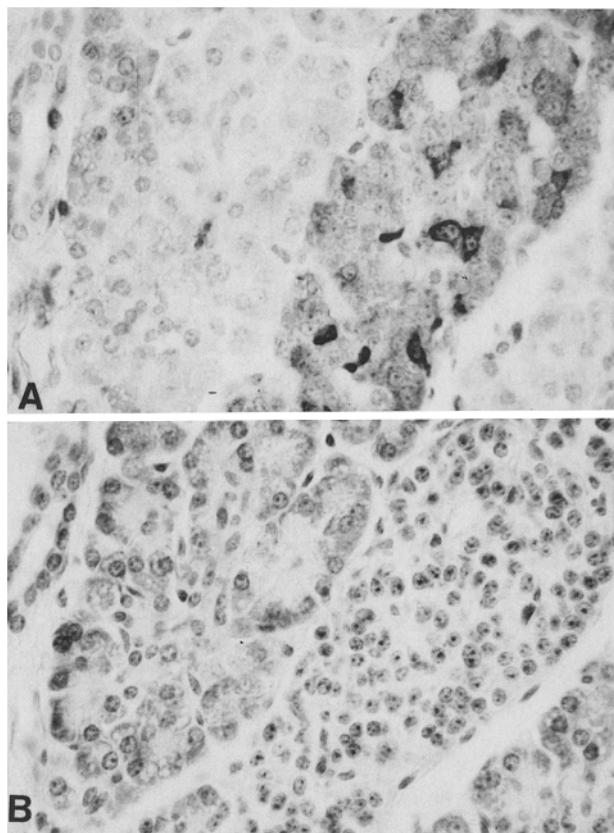

The two patients were HLA DR 3/4-DQ 2/8 heterozygous, a common HLA type in IDDM, and both died from cerebral oedema following attempts to correct their ketoacidosis and hyperglycaemia. Both patients showed a similarly severe loss of beta cells and reduced proinsulin staining of the few remaining beta cells. In addition, insulitis, the key finding in patients who die at the clinical onset of IDDM (Table 1), was present in both. However, although both patients suffered from the same disease with the same rapid and fatal outcome, patient 1 had

Table 2 Antibodies used for immunocytochemical analysis.

Antigen	Antiserum	Source
Insulin	GP-1	Å. Lernmark
Proinsulin		O. Madsen, Copenhagen, Denmark
Glucagon		Novo Nordisk A/S, Bagsvaerd, Denmark
Macrophage-specific antigen	HAM-56	A. Gow
CD4		Dako, Copenhagen, Denmark
CD8		Dako
Leucocyte antigen	LCA	Dako
HLA-DQ8		J. Petersen
HLA-DR		A. Foulis, Edinburgh, Scotland
IAPP 11-37		O. Madsen
Factor VIII		Amersham, England
Glutamic acid decarboxylase, 570-585	R7647	Å. Lernmark

Table 3 Morphometric analysis of the pancreas in newly diagnosed insulin-dependent diabetic children. Volume density of islet tissue is shown as percentage of pancreatic parenchyma. Islet beta and alpha cells, as well as macrophages, are shown as a percentage of islet tissue

Tissue or cell type	Patients		Controls		
	1	2	1	2	3
Islet tissue	2	2	4	4	3
Beta cells	8	13	53	55	55
Alpha cells	27	28	18	15	20
Islet macrophages	4	1.2	neg.	neg.	neg.

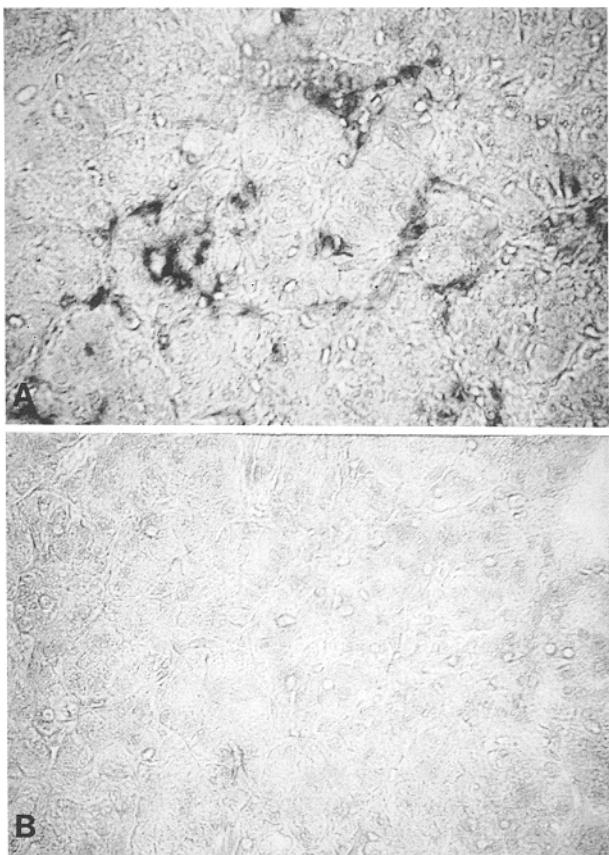


Fig. 4A Islet from patient 2 showing immunocytochemical staining with the macrophage marker HAM-56. **B** The same islet in an adjacent section shows the control staining with normal mouse serum. $\times 350$

prominent insulitis affecting most islets in the tissue specimens analysed, while patient 2 had minimal insulitis detected in only two islets out of about 200 examined. This raises the question whether the extent and quality of the immune reaction against the beta cells differs from one patient to another.

Analysis of the literature reveals that insulitis is rarely found after the age of 17 (Table 1) and is more often reported in infants younger than 5 years (Fig. 6). Moreover, severe insulitis has previously been observed in young children [29, 58, 61]. It is therefore conceivable that very young diabetic infants are particularly prone to severe insulitis because a diabetic manifestation during the first 10-20 months of life necessarily implies a major destruction of beta cells within a relatively short period of time. Our patient 1 would fall into this category. If, however, IDDM appears later in life, insulitis may be mild, because in these patients even a slowly progressing immune reaction has enough time to eradicate sufficient beta cells (approximately 80%, [33]) for manifestation of diabetes. These pancreases, as seen in patient 2, will then reveal predominantly insulin-negative islets and occasional insulitis.

The immune process in the two patients might differ not only in extent but also in quality. Here, several findings are of interest, although none of them uncovered clear differences. The first is that the insulitis infiltrate was composed of both B- and T-lymphocytes, confirming previous observations [8, 28]. The second finding is that immunostaining with the human macrophage-specific antibody HAM-56 revealed an infiltration of macrophages. HAM-56-positive cells were not only found in the islets affected by insulitis but also in those without insulitis, where they were barely detected in H&E-stained slides. The significance of this observation is obvious from our inability to find HAM-56-positive cells in the islets of control children. Our documentation of macrophages in human islets at the time of clinical onset of diabetes confirms a recent report [19] of macrophages in IDDM patients of less than 3 months' duration selected on the basis that insulitis was present. Monocytes/macrophages were also found in an 8-year-old girl with new-onset IDDM [28] along with signs of endothelial cell activation. To date it is not known whether the presence of macrophages may be sufficient to cause beta cell loss but

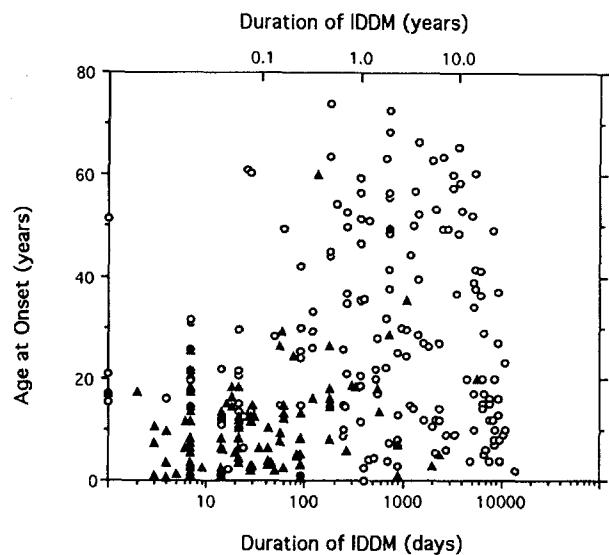


Fig. 5A, B Islet from patient 2 showing HLA-DQ8-positive cells mostly of endothelial origin but possibly also macrophages. Islets in adjacent sections are shown stained with the HLA-DQ8 specific monoclonal antibody incubated with an excess of the HLA-DQ8 sequence specific peptide (A) and in an excess of the HLA-DQ8 sequence specific peptide (B) which completely blocked the staining reaction. $\times 350$

the fact that these cells are beta cell-cytotoxic *in vitro* [49] could indicate that they may also be involved in beta cell destruction *in vivo*.

A third finding is that neither of the patients showed aberrant expression of HLA-DR or HLA-DQ class II molecules on beta cells. These data support observations in the spontaneously diabetic BB rat [40, 50] that the MHC class II expression previously described [8] may be explained by macrophages containing beta cell debris. It is of interest in this regard that GAD-immunoreactive cells were present in all islets irrespective of the insulin staining. In man, GAD65 is present predominantly in beta cells but low levels are also detected in alpha cells [32, 47].

Finally, it has been suggested that the loss of beta cells has reached 80% when overt diabetes occurs [33]. In our patients we were not able to determine the absolute beta cell volume, but the small percentage of beta cells detected in the islets supports the assumption that diabetes only manifests after major loss of beta cells. The functional capacity of the remaining beta cells is difficult to assess, but judged by the very low proinsulin

Fig. 6 Relationship of age at onset and diabetes duration to human insulitis. Age in years at onset of insulin-dependent diabetes mellitus (IDDM), plotted against duration of IDDM in days (semi-log scale, bottom), and years (semi-log scale, top) for 302 patients from the literature examined for the presence of insulitis. Patients include 172 that were negative for insulitis (○), 130 that were positive (▲) (see Table 1)

staining and the low *in situ* hybridization signal for proinsulin mRNA, it seems that the biosynthetic activity of these cells is severely impaired. Whether this is due to the general metabolic situation or the action of cytokines such as interleukin-1, tumour necrosis factor, or interferon gamma, alone or in combination, released by the immune cells (see [49] for review), is unclear.

In summary, our observations support the hypothesis that the extent of the immune reaction is usually much greater in IDDM patients who are only several months old than in patients who present later in life. We could not find any major difference in the features of the immune process, but in agreement with evidence from animals studies [50], and biopsies in new-onset IDDM patients [26, 30], our findings in these two patients fail to support the hypothesis [8] that aberrant expression of class II antigens on beta cells is significant with regard to the pathogenesis. Instead they suggest that, similar to autoimmune diabetes in NOD mice [37] and BB rats [27, 38], macrophage infiltration of the islets is also closely associated with the development of IDDM in man. In the animals, bone-marrow-derived macrophages are detected first, followed by CD8- and CD4-positive T-cells as well as B-lymphocytes.

The islet pathology heterogeneity in our two patients emphasizes the need for further pancreatic investigations in children. Our study suggests that it should be possible to investigate quantitatively both archive (Table 1) and new cases with antisera such as those we have used to localize (1) the target cell, (2) its autoantigens insulin and GAD65, (3) immune effector cells including macrophages, and (4) HLA typing for DQ8 by immunocytochemical staining. The latter technique has, to our

knowledge, not been reported previously. The causation of IDDM is still unclear and it remains to be determined by which immune processes the beta cells are destroyed.

Acknowledgements Supported by grants from the National Institutes of Health (DK26190, DK33873, DK42654, DK41801), the Diabetes Endocrinology Research Center (DK17047), the Swedish Medical Research Council and by grant no. 3.0093.90 of the National Belgian Research Council (NFWO). We are indebted to Dr. Joseph R. Siebert of the Children's Hospital at the University of Washington for specimens of pancreases from non-IDDM children. Sue Blaylock provided excellent assistance.

References

1. Arslanian SA, Becker DJ, Rabin B, Atchinson R, Eberhardt M, Cavender D, Dorman J, Drash AL (1985) Correlates of insulin antibodies in newly diagnosed children with insulin-dependent diabetes before insulin therapy. *Diabetes* 34:926-930
2. Atkinson MA, Maclaren NK, Roley WJ, Winter WE, Fish DD, Spillar RP (1986) Are insulin autoantibodies markers for insulin-dependent diabetes mellitus? *Diabetes* 35:894-898
3. Atkinson MA, Maclaren NK, Scharp DW, Lacy PE, Riley WJ (1990) 64,000 M_r autoantibodies as predictors of insulin-dependent diabetes. *Lancet* 335:1357-1360
4. Baekkeskov S, Landin-Olsson M, Kristensen JK, Srikantha S, Bruining GJ, Mandrup-Poulsen T, Beaufort C de, Soeldner JS, Eisenbarth G, Lindgren F, Sundkvist G, Lernmark Å (1987) Antibodies to a Mr 64,000 human islet cell antigen precede the clinical onset of insulin-dependent diabetes. *J Clin Invest* 79:926-934
5. Bärmeier H, McCulloch DK, Neifing JL, Warnock G, Rajotte RV, Palmer JP, Lenmark Å (1991) Risk for developing type 1 (insulin-dependent) diabetes mellitus and the presence of islet 64K antibodies. *Diabetologia* 34:727-733
6. Bonifacio E, Bingley PJ, Shattock M, Dean BM, Dunger D, Gale EAM, Bottazzo GF (1990) Quantification of islet cell antibodies and prediction of insulin dependent diabetes. *Lancet* 335:147-149
7. Bottazzo GF, Dean BM, McNally JM, MacKay EH, Swift PGF, Gamble DR (1985) In situ characterization of autoimmune phenomena and expression of HLA molecules in the pancreas in diabetic insulitis. *N Engl J Med* 313:353-360
8. Bottazzo GF, Florin-Christensen A, Doniach D (1974) Islet cell antibodies in diabetes mellitus with autoimmune polyendocrine deficiencies. *Lancet* II: 1279-1283
9. Bu DF, Erlander MG, Hitz BC, Tillakaratne NJK, Kaufman DL, Wanger-McPherson CB, Evans GA, Tobin AJ (1992). Two human glutamate decarboxylases, 65-kDa GAD and 67-kDa GAD, are each encoded by a single gene. *Proc Natl Acad Sci* 89:2115-2119
10. Cecil RL (1909) A study of the pathological anatomy of the pancreas in ninety cases of diabetes mellitus. *J Exp Med* 11:266-290
11. Christie M, Landin-Olsson M, Sundkvist G, Dahlquist G, Lernmark Å, Baekkeskov S (1988) Antibodies to a Mr 64,000 islet cell protein in Swedish children with newly diagnosed type 1 (insulin-dependent) diabetes. *Diabetologia* 31:597-602
12. Doniach I, Morgan AG (1973) Islets of Langerhans in juvenile diabetes mellitus. *Clin Endocrinol* 2:233-248
13. Eisenbarth GS (1986) Type 1 diabetes mellitus. A chronic autoimmune disease. *N Engl J Med* 314:1360-1368
14. Fischer B (1915) Pankreas und Diabetes. *Frankf Z Pathol* 17:218-275
15. Foulis AK, Stewart JA (1984) The pancreas in recent-onset Type 1 (insulin-dependent) diabetes mellitus: insulin content of islets, insulitis and associated changes in the exocrine acinar tissue. *Diabetologia* 26: 456-461
16. Foulis AK, Liddle CN, Farquharson MA, Richmond JA, Weir RS (1986) The histopathology of the pancreas in type I (insulin-dependent) diabetes mellitus: a 25-year review of deaths in patients under 20 years of age in the United Kingdom. *Diabetologia* 29:267-274
17. Foulis AK, Farquharson MA, Hardman R (1987) Aberrant expression of class II major histocompatibility complex molecules by B cells and hyperexpression of class I major histocompatibility complex molecules by insulin containing islets in Type 1 (insulin-dependent) diabetes mellitus. *Diabetologia* 30:333-343
18. Foulis AK, Farquharson MA, Meager A (1987) Immunoreactive- γ -interferon in insulin-secreting β cells in Type 1 diabetes mellitus. *Lancet* II:1423-1427
19. Foulis AK, Jackson R, Farquharson MA (1988). The pancreas in idiopathic Addison's disease - a search for a prediabetic pancreas. *Histopathology* 12:481-490
20. Foulis AK, McGill M, Farquharson A (1991) Insulitis in Type 1 (insulin-dependent) diabetes mellitus in man - macrophages, lymphocytes, and interferon-1 containing cells. *J Pathol* 165:97-103
21. Gepts W (1965) Pathologic anatomy of the pancreas in juvenile diabetes mellitus. *Diabetes* 14:619-633
22. Gladisch R, Hofmann W, Waldherr R (1976) Myokarditis und Insulitis nach Coxsackie-Virus-Infekt. *Z Kardiol* 65:835-849
23. Gorsuch AN, Spencer KM, Lister J, McNally JM, Dean BM, Bottazzo GF, Cudworth AG (1981) Evidence for a long prediabetic period in Type 1 (insulin-dependent) diabetes mellitus. *Lancet* II: 1363-1365
24. Hagopian WA, Karlsen AE, Gottsater A, Landin-Olsson M, Grubin CE, Sundkvist G, Petersen JS, Boel E, Dyrberg T, Lernmark A (1993) Quantitative assay using recombinant human islet glutamic acid decarboxylase (GAD-64) showed 64K autoantibody positivity at onset predicts diabetes type. *J Clin Invest* 91:368-374
25. Hahn von Dorsche H, Hahn HJ (1990) Quantitative-immuno-histochemical investigations on insulin- and glucagon-cells of fetal rat pancreas before and after cryopreservation. *Anat Anz* 170:79-82
26. Hanafusa T, Miyazaki A, Miyagawa J (1990) Examination of islets in the pancreas biopsy specimens from newly diagnosed type 1 (insulin-dependent) diabetic patients. *Diabetologia* 33:105-111
27. Hanenberg H, Kolb-Bachofen V, Kantwerk-Funke G, Kolb H (1989) Macrophage infiltration precedes and is a prerequisite for lymphocytic insulitis in pancreatic islets of pre-diabetic BB rats. *Diabetologia* 32:126-134
28. Hänninen A, Jalkanen S, Salmi M, Toikkanen S, Nikolakaros G, Simell O (1992) Macrophages, T cell receptor usage, and endothelial cell activation in the pancreas at the onset of insulin-dependent diabetes mellitus. *J Clin Invest* 90:1901-1910
29. Heiberg KA (1911) Studien über die pathologisch-anatomische Grundlage des Diabetes Mellitus. *Virchows Arch A Pathol Anat Histopathol* 204:175-189
30. Itoh N, Hanafusa T, Miyazaki A, Miyagawa JI, Yamagata K, Yamamoto K, Waguri M, Imagawa A, Tamura S, Inada M, Kawata S, Tarui S, Kono N, Matsuzawa Y (1993). Mononuclear cell infiltration and its relation to the expression of major histocompatibility complex antigens and adhesion molecules in pancreas biopsy specimens from newly diagnosed insulin-dependent diabetes mellitus patients. *J Clin Invest* 92:2313-2322
31. Junker K, Egeberg J, Kromann H, Nerup J (1977) An autopsy study of the islets of Langerhans in acute-onset juvenile diabetes mellitus. *Acta Pathol Microbiol Scand* 85:699-706
32. Karlsen AE, Hagopian WA, Petersen JS, Boel E, Dyrberg T, Grubin CE, Michelsen BK, Madsen OD, Lernmark Å (1992) Recombinant glutamic acid decarboxylase representing a single isoform expressed in human islets detects IDDM association 64K autoantibodies. *Diabetes* 41:1355-1359
33. Klöppel G, Drenck CR, Oberholzer M, Heitz PU (1984) Morphometric evidence for a striking b-cell reduction at the clinical onset of type 1 diabetes. *Virchows Arch [A]* 403:441-452
34. Landin-Olsson M, Sundkvist G, Lernmark Å (1987). Prolonged incubation in the two-colour immunofluorescence test

increases the prevalence and titres of islet cell antibodies in type 1 (insulin-dependent) diabetes mellitus. *Diabetologia* 30:327–332

35. Landin-Olsson M, Karlsson A, Dahlquist G, Blom L, Lernmark Å, Sundkvist G (1989) Islet cell and other organ-specific autoantibodies in all children developing type 1 (insulin-independent) diabetes mellitus in Sweden during one year and in matched controls. *Diabetologia* 32:387–395

36. Landin-Olsson M, Palmer JP, Lernmark Å, Blom L, Sundkvist G, Nyström L, Dahlquist G (1992) Islet cell and insulin auto-antibodies for Type 1 (insulin-dependent) diabetes mellitus in a population-based study of newly diagnosed diabetic and matched control children. *Diabetologia* 35:1068–1073

37. Lee KU, Amano K, Yoon JW (1988) Evidence for initial involvement of macrophage in development of insulitis in NOD mice. *Diabetes* 37:989–991

38. Lee KU, Kim MK, Amano K, Pak CY, Jaworski MA, Mehta JG, Yoon JW (1988) Preferential infiltration of macrophages during early stages of insulitis in diabetes-prone BB rats. *Diabetes* 37:1053–1058

39. Li L, Hagopian WA, Brashears HR, Daniels T, Lernmark Å (1994) Identification of autoantibody epitopes of glutamic acid decarboxylase in Stiff-Man syndrome patients. *J Immunol* 152:930–934

40. Like AA (1977) Spontaneous diabetes in experimental animals. In: Volk W (ed) *The diabetic pancreas*. Plenum Press, New York, pp 381–423

41. MacLean N, Ogilvie RF (1959) Observations on the pancreatic islet tissue of young diabetic subjects. *Diabetes* 8:83–91

42. McEvoy RC, Witt ME, Ginsberg-Fellner F, Rubenstein P (1986) Anti-insulin antibodies in children with Type I diabetes mellitus. *Diabetes* 35:634–41

43. Meyenburg H von (1940) Über „Insulitis“ bei Diabetes. *Schweiz Med Wochenschr* 21:554–61

44. Palmer JP, Lernmark Å (1990) Pathophysiology of type 1 (Insulin-Dependent) diabetes. In: Rifkin H, Porte D (eds) *Ellenberg and Rifkin's Diabetes Mellitus: Theory and Practice*, 4th edn. Elsevier, New York, pp 414–435

45. Palmer JP, Asplin CM, Clemons P, Lyen K, Tatpati O, Raghu PK, Paguette TL (1983) Insulin antibodies in insulin-dependent diabetics before insulin treatment. *Science* 222:1337–1339

46. Patterson K, Chandra RS, Jenson AB (1981) Congenital rubella, insulitis, and diabetes mellitus in an infant. *Lancet* I: 1048–1049

47. Petersen JB, Russel S, Marshall MO, Kofo H, Buschard K, Cambon N, Karlsen AE, Boel E, Hagopian WA, Hejnaes KR, Moody A, Dyrberg T, Lernmark Å, Madsen OD, Michelsen BK (1993) Differential expression of glutamic acid decarboxylase in rat and human islets. *Diabetes* 42:484–495

48. Petersen JS, Dyrberg T (1992) Production of epitope specific monoclonal IgG antibodies to HLA class II molecules by combining in vivo and in vitro immunization. *J Immunol Methods* 151:15–26

49. Pipeleers D, Ling Z (1992) Pancreatic beta cells in insulin-dependent diabetes. *Diabetes Metabol Rev* 8:209–227

50. Pipeleers DG, In't Veld PA, Pipeleers-Marichal MA, Gepts W, Winkel M van de (1987) Presence of pancreatic hormones in islet cells with MHC-class II antigen expression. *Diabetes* 36:872–876

51. Powell BR, Buist NRM, Stenzel P (1982) An X-linked syndrome of diarrhea, polyendocrinopathy, and fatal infection in infancy. *J Pediatr* 100:731–737

52. Riley WJ, Maclarek NK, Krischer J, Spillar RP, Silverstein JH, Schatz DA, Schwartz S, Malone J, Shah S, Vadheim C, Rotter JI (1990) A prospective study of the development of diabetes in relatives of patients with insulin-dependent diabetes. *N Engl J Med* 323:1167–1172

53. Rosenbloom AL (1990) Intracerebral crises during treatment of diabetic ketoacidosis. *Diabetes Care* 13:22–33

54. Schmidt MB (1902) Über die Beziehung der Langerhans'schen Inseln des Pankreas zum Diabetes mellitus. *Münch Med Wochenschr* 49:51–54

55. Srikantha S, Ganda OP, Eisenbarth GS, Soeldner JS (1983) Islet cell antibodies and beta-cell function in monozygotic triplets and twins initially discordant for type I diabetes mellitus. *N Engl J Med* 308:321–325

56. Stansfield OH, Warren S (1928) Inflammation involving the islands of Langerhans in diabetes. *N Engl J Med* 198:686–687

57. Steiner H (1968) Insulitis beim perakuten Diabetes des Kindes. *Klin Wochenschr* 46:417–421

58. Van Gompel J, Mahler T, De Paepe M, Klöppel G (1993) Comparison of in situ hybridization and immunocytochemistry for the detection of residual beta cells in the pancreas of streptozotocin-treated rats. *Acta Diabetol* 30:118–122

59. Vardi P, Ziegler AG, Mathews JH (1988) Concentration of insulin autoantibodies at onset of type I diabetes: inverse log-linear correlation with age. *Diabetes* 9:736–739

60. Wallensteen M, Dahlquist G, Persson B, Landin-Olsson M, Lernmark Å, Sundkvist G, Thalme B (1988) Factors influencing the magnitude, duration, and rate of fall of B-cell function in type 1 (insulin-dependent) diabetes children followed for two years from their clinical diagnosis. *Diabetologia* 31:664–669

61. Warren S (1927) The pathology of diabetes in children. *JAMA* 88:99–101

62. Warren S, Root HF (1925) The pathology of diabetes, with special reference to pancreatic regeneration. *Am J Pathol* 1:145:415–429

63. Weichselbaum A (1910) Über die Veränderungen des Pankreas bei Diabetes Mellitus. *Sitzungsber Kaiserl Akad Wiss Wien* 119:73–281

64. Yoon JW, Austin M, Onodera T, Notkins AL (1979) Virus-induced diabetes mellitus. Isolation of a virus from the pancreas of a child with diabetic ketoacidosis. *N Engl J Med* 300:1173–1179